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On the Exponential Convergence of the h-p Version for

Boundary Element Galerkin Methods on Polygons

I. Babuska. B. Q. Guo. E. P. Stephan

1. Introduction

Most research for the boundary element method (BEM) has been carried out in the framework

of the h-version [11], [13], [28] where accuracy is achieved by decreasing the mesh size h, while keeping

the degree p of piecewise polynomials fixed. For this method several detailed results, including

asymptotic rates of convergence for both first-kind and second-kind integral equations are well-known

(see [21], [28]). The basic idea of the above convergence proofs is the observation that for strongly

elliptic operators one obtains quasioptimal convergence in the energy norm for any Galerkin scheme

with conforming boundary elements (see [27)). This result has been used in [25] and [26] to analyze Lhe

p- and h-p version. with quasiuniform mesh for BEM for some first kind integral equation on a

polygon F. Those versions for BEM have been recently ititroduced (see [1], [2], [18], [221, [23]). In the

p-version a fixed mesh with constant h is used, and accuracy is achieved by increasing the degree p of

the polynomials used as boundary elements. The b-p version combines the ,u dpproaches. If one uses

a quasiuniform mesh on the polygon F and if the singularity of the solution of the integral equation is

located at vertices, the rate of convergence for the p-version of the boundary element method (BEM) is

twice that of the h-version (see [25], [26]) for some first kind integral equations. These results have

been known for the finite element method where these two extension processes (p- and h-p version)

have been thoroughly investigated in a series of papers [3], 19], [10j, [8], [14). Furthermore. for the

finite element method on a geometric mesh it has been shown in [17] that under proper assumptions

satisfied usually in practice, namely that the given data are piecewise analytic, the h-p version has an

exponential rate of convergence with respect to the number of degrees of freedom while the h- and p-

versions have only a polynomial rate. In this paper we show the corresponding result for the boundary

element method, i.e., if one uses a geometric mesh Fr on the boundary r which is graded towards the

vertices, then the convergence rate of the Galerkin solution for the underlying boundary integral

equation is exponential. We consider both the Dirichlet a , tn' Neumann problem for the Laplacian

in a plane polygonal domain and solve them via first-kinu .-gral equations on F with a weakly

singular and hypersingular integral operator V and D, respectively. It is known [13] that the operator

V of the single layer potential is a continuous, bijective mapping from the Sobolev space H 1/ 2 (F) onto

H1/2(r) if for the conformal radius of the polygon r there holds Cap(F) 0 1. From [12] we have that



the operator D of the normal derivative of the double layer potential maps H' /2(F) continuousiy and

bijectively onto H L-/2 (F). As one of our main results we show that if the given data are piecewise

analytic then the solutions of the integral equations are also piecewise analytic, i.e., for given data in
0.1 1,2

some countable normed space g E B (F) we have u E B5 (F) satisfies

Du = (1-K')g on F, 0.I)

1,2 L, I
whereas for g E B3 (F) n C°(F) we have u E B() satisfies

V u = (I+K)g on F, (1.2)
an

where K,K' are the operators of the double layer potential and its adjoint.

In Section 2 we introduce the weighted Sobolev spaces H9 (02) (k > f > 0) ana the countable

normed spaces B(9,. We quote some related trace and extension theorems from [6] together with the

existence results of the solution u E Bo(Q?) of the Neumann and Dirichlet boundary value problem.

respectively.

In Section 3 we consider the integral equation (1.1) on F governing the Neumann problem and
1,2

prove the above mentioned existence and regularity result fbr its solution u E B3 (F). Then we

present our geometric mesh F, on the bouandary curve r for an L-shaped domain and the corresponding

conforming boundary element space aP([ ) consisting of continuous piecewise polynomials of

increasing degree %hre linears are used on the smallest subinterval, quadratics on the next larger

subinterval and so forth. Then we show (Theorem 3.4) that the Galerkin solution up E SP(F) for

(1.1) converges in H1/2(r) with exponential rate towards the exact solution.

In Section 4 we present the corresponding results for the Dirichlet problem by showing that the
0,1

solution Ln of the integral equation (1.2) belongs to B' (F) and that its G-lerkin solution Vp Ean
S-1 n )-/sP-(Fr) converges exponentially in H-/().

or
2. Preliminary

Let 0 E R2 be a bounded domain whose curvilinear boundary aQ is a piecewise analytic curve 0
M 0l

r = U Fi, where F, is an open arc connecting the vertices A i and A,+ 1 (A, = AM+,). We denote Yn
i= 1

the internal angle at Ai by wi and assume 0 < wi < 2w, 1 < i < M.

Let Hk(Q.), k > 0 integer, denote the usual Sobolev space (see [20]), i.e., n/. ..
A'orilllity Codes

!Avail S ad/or
Dist Sriccial



HkQ)=fu a DuJ 11,112) < cc

where a a, (>.2) 0 integer, i = 1,2, IHt ck, + a,, and

Dcu ~ u U = kalax~71ax'l' =xI

Since Q2 is a Lipschitz domain any u =-Hk(Q) can be extended to Hk(R2) (see '24]). Therefore

H k-12 J)is defined as the restriction on r of functions in Hk(1 ) for integral k > 1, i.e.,

H -1) = ur u EHk(Q)}

with

H (r) uIr g H'Q

and for k < 0

H k-1/ (r) = (H ('k-l/ 2 )(rfyI (dual space).

Let r1 (x) = dist(x,,A1 ). 2 = (31,32 .... 3M1) be an MI-tuple of real numbers 0 < 3, < 1. For

any integer k > 0Owe shall write 3+k = (2 1 +k,3 2 +k,. 4 M+k), and 2 (P, 3 H k~(x.W

define the weighted Sobolev space for integers k and R, k > C > 0, by =

He,(C. < 0, for 0 <e al<kHe (D) = to Iu E Ht' )if f '1 0$+1.1-1D'uI IL,(rnQ 0

and the countable normed space for I > 0

B1()= {u E Ho" (Qt), V k > t, I I~ eP D-uIl() Cd k -(k -)

for Ilorl = k = t, I + .with C > 1, d > 1 independent of k)

The space HO~ /.1/(r), (resp. B130-/'(r)), k, I integer, k > t > 0, is the trace space of
kI k -I/2,t-1/2 t-1/(r) S

HO (Q), (resp. B30(fl)), i.e., for any g E H (r') (reap. BO' 2 () there exists G E Hq, (Q)
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(resp. B,(Q)) such that GIF = g, and

11g11 k-1/21-4/2 = inf IIG ,

H3 (F) H3 (A)

The analogous definition of the weighted Sobolev spaces and countable normed spaces on the

interval I = [ab], a.b E R. we quote from j6,:

For k > C > 0 integer,

C _"

Hb (I) = {ufu E H-(I) >f >0, ,1 - , u (x)IIL,(I) < Do for 0 < t < m < k}.

and for f > 0

B5(I).= {u E Hi (I), V k > e, 1I+4 _u() (x)llL (i) _< Cd-'(k -)!

for k = M,+ I.... with C > 1, d > 1 independent of k}

wher ~.2 43 1+k-fwhere (x) H (x), rl(x) = Ix-al, i,(x) = -i, 3 = (I1,-b2), 0 < i t , ?2 < 1.
i=1 k, I  e

For any Fi E r the spaces Hb, (F,) and Bi (P ) are defined with the help of a smooth map

Cl k,C N1 k,C,
I - 1, via the spaces H (I) and B (I). We define H (r) fl H s (F;) and B;,(F)

M C j=1

*H B,(F,) with f = (tj,...,eM) and 3 = (/?Ii 3 2..... 3 M), i = (),',) We shall write
j=l
3, _> 3, if ,_ k,k = 1,2, and > 2if , 1 , < j< M. For any real number s we

shall write - s (resp. -3 > s) if /3j,k _ s (resp. /3j > s).

It is difficult to verify whether a function on F belongs to the spaces Hk-' 1 2 -1/2(F) and

kce e
B1-6/(F). On the contrary the spaces H (F) and B (r) characterize the traces of functions of

Ho (QI) and BO(() on F in a precisely verifiable manner (see Theorem 2.1). Theoreia 2.2 deals with

the extension of functions from F to ft.

t kE
Theorem 2.1. (cf. Theorems 4.1 and 4.4 of (6]). Let u E BO(Q?) (resp. Ho (1)), 1 = 1,2, k > t+1,

then for 1 < i < M, ulr E B0i (17) (resp. H.i (ri)) with



,. E ( ,,. -1_ j 1,2 if < 3, 3, < 1 (2.1a)

or u!F E B3,(F,) (resp. 14 ,F,)) wzth

3 ".. E (1, 3 , 1j -1- 1) if O0 < 3, 3 , < . 2.1 b ,

Theorem 2.2. (cf. Theorems 4.3 and 4.5 of (6]). Let g be defined ot F and g, =g F

(z) If g E C°(F), and gi E B,(ri) (resp. H;,(F,). k > 2) for 0 < 3 < or g, ,' , i resp.

H , (F,), k > 2) for ; < 3, < 1, 1 < i < M, then there ezists G E " Q) H ii ( ur.hi that

GIr = g.

() If g, E Bq (ri) (resp. H"i(Fl), k > 1) for 0 < j, < 1, or g, E BF, '-p. H, F,)) for

1 
E B kl

< , < 1, 1 < i < M, then there eistsG C B .(fQ) (resp. H,,.(f)) such that ; 9.

In (:) and (it) X -3.3 ) with 3* satisfying

i = Ma-X(3.- 1 ,2 1 ), 2,., = 3,, - 1 sign (2.-

for 1 < i < M, 1 < j < 2.

In the following sections we assume, for sake of simplicity, that 02 is a straight-line polygon.

We will make comments on a curvilinear polygon at the end of the paper. By B (F) we denote for

1 < i < M the space - B,(F) x H1 Bo i (ri).0<10,<1 !< i<l

In this paper we consider the Dirichlet problem of the Laplace equation

Au = 0 in Q
(2.3)

U11 = g

and the Neumann problem

Au = 0 in Q

au 
(2.4)

r g
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where L" means the normal derivative with respect to the unit outer normal n, and g satisfies
(9n

f gds = 0
F

Combining Theorem 2.1 of [4] and Theorem 2.2 above we have the following theorems.

Theorem 2.3. If g E B3 1,r) n C0( ") with 3 = 3 3 M), ", = (3.3,. 0 < 3, < 1.

1 < i < M, 1 < j < 2. then the problem (2.3) has a unique solution u t = (e) with 3 given by

3, = 3' if > 1

(2.6)

;3, > 1 - 'if 3 -<I

where 3. satisfies (2..2).

Theorem 2.4. If g E B (F) with d = (A31,A. ..... ,, 3,2), 0 < 3,1 < 1. 1 < i < M.

1 < j < 2. then the problem (2.4), (2.5) has a solution u E B-(Q) which is unique up to a constant

with 3 given by (2.6).

3. Boundary Element Method for the Neumann Problem

We consider the Neumann problem (2.4) with solvability condition (2.5). As a consequence of

Theorem 2.1, we obtain

Theorem 3.1. Let u E B2(f0), then " B ') with /,, given by (2.1).

A combination of Theorem 2.1 in [4] and Theorem 4.5 in [6] leads to the resul':

0,1 2

Theorem 3.2. Let g E Bt (r) satisfying (2.5) then there ezists u E Bp(Q) solving (2.4) with 13 given

by (2.6). Furthermore UF E B 1(F) with A satisfying (2.1).

Proof. Due to Theorem 2.2 there exists a G E B0,(Q) such that GiF = g. Then by the definition of
1/2 1/2

BO . (F), we have g E B.. (r) with 0* satisfying (2.2). Then by Theorem 3.2 in [4] problem (2.4) has

a unique solution u E BO(fl) (up to a constant) with 3 satisfying (2.6). Then applying Theorem 2.1
1,2we have uiF E Bh (F) with 13 given by (2.1). 0"



R ..k 3.1. In general, we have 3 = f- with some e > 0. According to (2.1). 12.2). and 12.t;6,

resp. 3,2) depends on the interior angle ,, and on 3, as well as j, iresp. 3,.. For instance, if
F 0) r : 0 < 3,.1Snce

g E BblF,) q B,_ 1 (F,_.), 0 < 3 _ . 3, < 4, we have 3' = max(J3 .3,_) -. b 2.2. S
0 < ,, < 2,r, i- < < 3" and 3, 3 by (2.61 Due to (2.1) 3, 1E 3,-.- h,.nce

>| 3, -1 = max " j-

3,1 > 3,-iL = max(3, .,,,) > __. For the other cases the relations between 3,. 3,. . resp.

3,). and ,, can be derived similarly.

Next we derive a boundary integral equation to solve the Neumann problem '2.1). Insrting

the fundamental solution v = I fntx-v of .Au = 0 into the secord Green formula
2 7r

f(.Iuv - uAv)dx f (u - v )ds

Q r an an,

we get the representation formula for x E 9

u(x) = -f -L fnjx-vyu(y)ds(v) - f1 Ou(y) Cnix-v'(y) 3.22 7 an, 2 7r l an3

which yields on F the integral equation

Du = (1-K')-.
an . 3

with the integral operators for x E F

Du(x)- 1 n-f --L nlx-vlu(y)ds(y),

and 
T

K' au(x) - 9- f ex-l u(y) ds(y).

Now, equation (3.3) and the boundary conditions in (2.4) lead to the first kind integral equation (see

(12])

Du = f on r (3.4)

where f = (1-K)g. There holds the following result:

0,1
Theorem 3.3. For given g E B h (r) satisfying (2.5) with f3 as in Theorem 2.4, the integral equation



(3.4i together with the side condition

f u ds =0 3.
F

1.2
has a unique solution u E B; (F) with 3 determined by (2.1) and (2.6).

Proof. Firs- from Remark 3.2 and Lemma 3.2, below, we have g E H- -).

By Theorem 1.5 (ii) of [121 together with uniqueness of the system (3.4). (3.5). its o',Iion u

exists uniquely in H 1/2(F). Inserting this u and the boundary condition g = nn into (3.2P we' define

for x E .2

fi(x) = -- Cnlx-vlu(y)ds(y) f 1 F g(y)Cntx- y!ds(y). 3.6 1

By ; i E H1(2) 'solves the Neumann problem (2.4). Due to the derivation above v =

H / 2 )F) solves the integral equation (3.4).
0.1

On the other hand from Theorem 3.2 we know that for g G B-, (F) there exists a unique

solution (up to a constant) U E B(..) of the Neumann problem (2.4) with 3 satisfying (2.6:. Bu"

from the definition of B(£) we have U E H('). Hence 6 - U = constant on P2. But for v = F

we have u-v = constant on F where u E H 1(F) solves the integral equation (3.4). Hence

u= -F + c. c = constant, and since U E C B; (F) due to Theorem 3.2 for 3 satisfying (2 .1), thE
12

assertion u E B3 (F) follows.

In the proof of Theorem 3.3 we made use of the following results.

Lemma 3.1. Let g E H:'(1) with 0 < 3 < 1, then g E (11/2(I)).

Proof. We may assume that I = [0,1], and 4: =X x E , 0 < ¢)l< For an-, E H /(1)

If gvdxI !5 (f Ix01 gI'dx) /2 (fix- vj2dx )1/2 < 11911 0,0 (fx 2 111.12 dx)1/2
I ~(I)'I

Since 0 < 31 < 1, there exist integers p,q such that 1 + 1 = 1, and 231p < 1. Therefore by the

imbedding theorem (see, e.g., [161)

fx 2 01IV12dx < (f x-2p&)1/P(f )1/ < CIIVII 2  <- HIH 1/2
L H 1



and

,fg,dxi < CjIgjl
I H: 'I) H )

which leads to the conclusion.

Lemma 3.2. If g e Hi  0),0 < < 1, heng

2/

Proof. First from [26] we observe that for v E H /2(F) there holds

M
'-  IViH 1/2 <-  CfIVI 1/2(

Zi H (r'J H (r)

with a constant C independent of v and the length of r, Hence we obtain for g E H:i F,

fJgvds M f gvdE

1H0 1/2 F:  < K C I ! . C:l 0.0H (r) II 1/2( i=1 IIV= H: (r,) H: (F)H '(r) i H IIH/( 3

with a constant C. Here we have made use of Lemma 3.1 and taken F, I. Hence by the definition

of H-/ (r) the assertion follows. 0

Remark 3.2. Definition shows that g E B (F) belongs to B(F) with

, ={fo r 0 < ,<2

L for 1 3,<I

Furthermore we have B (F) C Hie (F) due to the definition of Bu(F) and therefore by Lemma 3.2 we
0,1 -/2

have g E Ba (r) belongs to H-/ (r).

Now we discuss the numeri.-.i solution of the system (3.4), (3.5) by the h-p version of the

Galerkin boundary element method.

Let Q be an L-shaped domain as shown in F;g. 3.1. We assume for sumplIc.y that the 3olution

u of (3.4), (3.5) belongs to BI(F) (resp. Be(F)) with P l= yvl1*2 ,- = IxI21, , < /i, 2 , 3, < ,

(resp. -, < < 1) and i "-1 for 3 < 6,
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74  Y

Q2 _ __ _

I I1 1

Fig. 3.1. L-Shaped Domain Q.

i.e.. the singularity occurs only at the origin. For example this is the case of u = 1 3 sin on F (resp.

u = 2
/

3 cos = 9) where (r,9) denote the polar coordinates centered at the origin.

Let a E (0,1) be the mesh factor and n, integer, be the number of layers, and let F,,, I < i <

I(j), 1 < j < n+I be the boundary elements such that dist(0,rF,,) ," . 1 < j < n+l and

dist(O,F,,1 ) = 0. 1 < i < (j). Then F = {f1,,, 1 < i < (j), I < j _ n+1} is called the geometric

mesh on r associated with a and n. Fig. 3.2 shows a sequence of the geometric meshes with 0= 0.15.

n:l n:2

3,2 T2,2 r73,3  T2,3

r1, 2

r 4, , r,,2 r4,, T,3
2 0 r2,2

T5, 2  
T,,, r2,,

,r 6,3 .,I
MeshI I

Mesh r Meshro



n=3

11r

Mesh r

Fig. 3.2 Geometric Mesh rd, n I 1,2.3, a 0.15.

0aTTaz -

I k

F ig. 3.3. Geometric Mesh Q, n =3. a 0. 15

Le,- P 1 p~ < i < 1(j), 1 < j !< n+s1} be the degree vector with p,, I integer. The

boundary element space associated with the geometric mesh r, and degree vector P is defined as

Sp(Fn) 10{ I#Ir,, is a polynomial of degree < p,,}
and

SV(r n) = sP(r") nl C0 (r) C H12()

The geometric mesh r. can be extended to a geometric mesh Qln on Qas shown in Fig. 3.3.

Therefore the geoemtric mesh r., on 00can be defined as the trace of the geometric mesh
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S= {fj. I < i < 1(j). I < j _ +

i.e., . = nQ, (9 8Q. Hence the space SP(r) is actually the trace spaces of SrKT), i.e..

sP(r,) = E sP(E 7))

and

For details of the definition of the geometric mesh on a curvilinear polygonal domain Ql and the finite

element space S (Q"), see [5]. [7], [17].
p n

From [17] we quote the following approximation property ofS (Q,).

2 eLemma 3.1. Let u E Bq(Q) with -1 = r , 0 < 3 < 1. For any LT E (0,1) there exists w E

n C°(n) with p, ='p, > 1 andj;, <_ p, _ nv. 0 < p <_ v < oo, which satisfies

lIU-wllHi(Q) !5 Ce- b

,nwhere n is the number of layers of the geometric mesh f , and C,b are some constants depending on 3

and a but not on n.

By the trace theorem we know that SP(F) C H" 2 (F). The corresponding boundary element
0.1

Galerkin procedure for the integral equation (3.4), (3.5) reads: For given g E B (F) find

up E SP(F) such that

KDup~w1L2(F) = lK)g.w 2([)7 V w E § (171) (3.7

and

f upds = 0
F

where (.,.) denotes the duality between H- 1/(F) and H 1 2 (). We have the following approximation

result of the boundary element Galerkin method.

Theorem 3.4. Let u E BI(F) (resp. B3(F)) be the solution of the integral equation (3.4), and r be the

boundary of the L-shaped domain as shown in Fig. 3.1, where ,j = 1,. = p2,2 = 0, 3 < < 6,

j = 1,2 and < [3,2, <,. < 4 (resp. < f,., /32, < 1). Let r:, a E (0,1) be the geometric mesh
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on (: and lei SP(r) denote the boundary element space defined above with p = p > 1.

it, < p, < nv, 0 < p < v < . Then the boundary element Galerkin solution up of (3.7) converges

to u in H 1/2( ) exponentially, i.e.,

IIu-upla 1 1/'r < Ce - bN (3 )

where N is the number of degrees of freedom, C and b are some constants depending on 0' and .3 but

not on N.

Proof. Note the operator D in (3.4) is strongly elliptic in H1/2 (r), i.e., satisfies a Girding inequality

in H 1/2() (cf. Theorem 1.15 (ii) in [12]). Hence due to [19], [27] any conforming Galerkin scheme

converges in H 1/2 (r), and we have

u /(r) < wp (r,) -w H (r)

2 n
Let U E B (Q) be the solution of the boundary value problem (2.4). (2.5). Q, be the

geometric mesh on £, ard Sp(Q20 ) n C0 (Q) be the 2D finite element space. By Lemma 3.1 there exists

a Wp E SP(Q',) n C°(n2) such that

IIU-Wpl H 1 0) < Cle - bin (3.9)

where n is the number of layers of Q2a.r

Let wp = wpir, then wp e S (Fa), and by the trace theorem

I Hu-wPH1/2 (r) = IIUIr - WplrIH 1/2(r) < CIIU-WllHI(Q ).  (3.10)

Now, (3.9) and (3.10) together yield

IIu-wPII H/ 2 (r ) :5 Ce - "'.

Note that 1(j) < k uniformly with respect to j, 1 < j < n+1. Hence N < kn , where k is some

constant independent of N, which leads to (3.8) immediately. 0
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4. Boundary Element Method for the Dirichlet Problem

In this cection we consider the Dirichlet problem (2.3).

Lemma 4.1. If g E B (F), then g E /(r).

L.2 2,1 '1
Proof. Since g E Bj (F), E H (F,) for 0 < 3, < o- gF E Hj (F,) for < , <(F), gir , 12.,22 r

'9 (Q.) wih3 aisyn(2)suhtaGI < i < M. By Theorem 2.2 there exists a G E H (P.) with 3 satisfying (2.2) such that G
2,21/

By the definition of H.- (Q), G E H'(Q). Therefore g E H 1 2(F).

1,2 
2

Theorem 4.1. Let g E B3 (F) n C0 (F). Then there exists a unique solution u E B(fT) of (2.3) with

3 satisfying (2.6). Further au E B (r) with 3 satisfying (2.1).

Proof. By Theorem 2.3 the problem (2.3) has a unique solution u E B (0) with 3 satisfying (2.6).
Therefore, D'E B,9(0) for jal = 1. Applying Theorem 2.1 we obtain Lu] E BIF) with

Thrfoe uE 1On lF ( wt

satisfying (2.1). 
0i3

Next we derive a boundary integral equation for (2.3). We introduce the integral operator

V L(x) - f au() x E F (4.1

and 
n7 n

Ku(x) = - tnx-yJu(y)ds(y), x E r (4.2)
Fand an

Taking the limit x E F in (3.2) we obtain via the well-known jump relation for the double layer

potential K the integral equation on F

V Lu(x) = (1+K)u(x), x E F. (4.3)
an

Insertion of the boundary condition of (2.3) into (4.3) leads to the first kind integral equation

Vu = fon F (4.4)

an r

with f = (I +K)g for which there holds the following result.



1.5

Theorem 4.2. Let cap(F) # 1 where cap(F) is the capacity (or conformal radius) of F. Then for
1.2 O

given g E B (F) n C°(F) there exists exactly one solution Ln E B3 (n of the integral equation 14..

with 3 given by (2.1) and (2.6).

1.2

Proof. From Lemma 4.1 we have that g E B3 (F) implies g E H (F). By Theorems 3.5. 3.8. and

3.9 in [13] the integral equation (4.4) has a unique solution uE H 1 () for given da

(r). Then inserting this T together with the given data g = u into (3.2) we define
On

, f- tnj, 1 f (y)Cnjx-yjds(y), V x E D?. (4.5)

By Theorem 3.9 in [13] we know Q E H'(Q) and solves the Dirichlet boundary value problem

(2.3). Also Lu E H_'/2(F) satisfies the integral equation (4.4) due to the definition of it. Due to the

uniqueness of the solutioi- of (4.4) in H- '"(F) we have u Lu

By Theorem 4.1 there exists a unique solution U(x) E B,(Q2) of (2.3) with 3 satisfying (2.6).

and U E B3 (F) for 3 satisfying (2.1). Since B9(f2) C H'(fQ) we have i = U by the uniqueness of

the solution of the Dirichlet problem. Hence = G B M. But we also have 25 - au
an r = nl (r) 1'r aIn

completing the theorem.

Now we consider the rate of convergence for the h-p version of the boundary element Galerkin

method for the integral equation (4.4). For simplicity we assume again that 2 is the L-shaped domain

shown in Fig. 3.1 with cap(F) # 1 and that g and the solution L- of (4.4) have a singularity at the
an

origin only. Then the geometric mesh F' on F and the boundary element space SP(rF) are defined as

in the previous section. They are the traces of the geometric mesh Q2n on Q and of the finite element

space SP(fa), respectively. Obviously SP-1(F§) C L2(F) C H- / (F).
1 2

The Galerkin procedure for the integral equation (4.4) reads: For given g E B 3 (F) n C0 (F)

find 10p E SP-((r) sich that for all Op E sP-1(r',)

(VPO <VbpLI(r) ---((1+ K)g,Op)L 2(r) .  (4.6)

For the boundary element solution O4p we have the following approximation theorem.

Theorem 4.3. Let o E B1(F) (resp. B (F)) be the solution of the integral equation (4.6) where F with



16

cap(Fr) * I is the bou dary of the L-shaped domain as skown in Fig. 3.1. and j, = 31 = 3, ,'

_< i < 6. 1,2, < <1. ; 1 rep < "...3.i < 1 ). Let F"n. or E (0.1) be the

geometric mesh on r aid SP- (F;) be the boundary element space defined in previous sections utth

p,.1 = p2 > 1. j, pJ S vn, 0 < M K v < . Then the boundary element Galerkin solution t P of

(4.6) converges to in H 1/2() ezponentially, i.e.,
an

Vp - 9 1/2 ce- bN 1/ 2 (41

where N is the number of degrees of freedom. and C, b are some constants depending on , and 3, but

not on N.

Proof Since the operator V is strongly elliptic, i.e., satisfies a G.rding inequality in H- /2(F) (cf.,

Theorem 2.19 in [13]), any conforming Galerkin scheme converges, and we have

l Lu 1 H 1/2 <C inf Iu I - / (4.8)
-() WpESP-1(r,) On IH (r)

Let V be the harmonic conjugate of the solution U of the boundary value problem (2.3). Then

V satisfies

AV = 0 in Q2

(4.9)
0V = EI=: k

and V E B6(2). Following the proof of Theorem 5.1 of [7] we can show that the 2D finite element

solution Vp E f ) l C(O) of the Galerkin equations for (4.9) satisfies

IIV-VPIIH'(2) _ Cie - b" (4.10)

where CI,b I are independent of n and p. Furthermore

VP := -O'- " k, E S,-,(Fn),

where kp is the projection of k on SP-'(rf). Therefore we have with L = U (compare Theorem
an anr



17

4.2) and using (4.9)

- PIH i(r) - 'r I H'1 2(r) 1 ( a ) r (411

From Lemma 3.2 in [25] it follows that w E H 1/(r) implies for the derivative wl E H- /2 (F). Hence

there exists a constant C such that

s -I H- 2(r) H-VpjI / )

Therefore together with the trace theorem we obtain from (4.10) and (4.11)

L0 - V!-5 C]V-V ( :< Cle- n (4.12)
Ian PH1H2( ) CIV LHi(£2)

Now, (4.12) together.,with (4.8) yields (4.7) by noting that N < kn 2 for some constant k independent of

N.

Remark 1. The regularity of the solutions of the boundary integral equations for mixed boundary

value problems and the exponential rate of convergence for the h-p version of the boundary element

Galerkin method can be proven similarly, but we will not elaborate it here, see [4], [6], [5]. [7], [13].

Remark 2. In previous sections we assumed that 02 is a straight-line polygon. If 2 is a curvilinear

polygon with a piecewise analytic boundary, the solutions of the boundary value problems (2.3) and

(2.4) belong to Be(£2) for any e > 0. (see [5]). Then it could be proven that the solutions of
1,2 O.i

equations (3.4) and (4.4) are in B +,(F) and Bb ,(F) respectively. Thus Theorems 3.4 and 4.3 remain

valid.

Remark 3. The geometric mesh shown in Fig. 3.2 is designed for the problems with a singularity at

only one corner. But it is not difficult to generalize the above technique to the problem with

singularities at each corner of F, and the exponential rate of convergence of boundary element Galerkin

solution can be proven again.
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